Molecular Template for a Voltage Sensor in a Novel K+ Channel. II. Conservation of a Eukaryotic Sensor Fold in a Prokaryotic K+ Channel

نویسندگان

  • Alicia Lundby
  • Jose S. Santos
  • Cecilia Zazueta
  • Mauricio Montal
چکیده

KvLm, a novel bacterial depolarization-activated K(+) (Kv) channel isolated from the genome of Listeria monocytogenes, contains a voltage sensor module whose sequence deviates considerably from the consensus sequence of a Kv channel sensor in that only three out of eight conserved charged positions are present. Surprisingly, KvLm exhibits the steep dependence of the open channel probability on membrane potential that is characteristic of eukaryotic Kv channels whose sensor sequence approximates the consensus. Here we asked if the KvLm sensor shared a similar fold to that of Shaker, the archetypal eukaryotic Kv channel, by examining if interactions between conserved residues in Shaker known to mediate sensor biogenesis and function were conserved in KvLm. To this end, each of the five non-conserved residues in the KvLm sensor were mutated to their Shaker-like charged residues, and the impact of these mutations on the voltage dependence of activation was assayed by current recordings from excised membrane patches of Escherichia coli spheroplasts expressing the KvLm mutants. Conservation of pairwise interactions was investigated by comparison of the effect of single mutations to the impact of double mutations presumed to restore wild-type fold and voltage sensitivity. We observed significant functional coupling between sites known to interact in Shaker Kv channels, supporting the notion that the KvLm sensor largely retains the fold of its eukaryotic homologue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Template for a Voltage Sensor in a Novel K+ Channel. I. Identification and Functional Characterization of KvLm, a Voltage-gated K+ Channel from Listeria monocytogenes

The fundamental principles underlying voltage sensing, a hallmark feature of electrically excitable cells, are still enigmatic and the subject of intense scrutiny and controversy. Here we show that a novel prokaryotic voltage-gated K(+) (Kv) channel from Listeria monocytogenes (KvLm) embodies a rudimentary, yet robust, sensor sufficient to endow it with voltage-dependent features comparable to ...

متن کامل

Molecular Template for a Voltage Sensor in a Novel K+ Channel. III. Functional Reconstitution of a Sensorless Pore Module from a Prokaryotic Kv Channel

KvLm is a prokaryotic voltage-gated K(+) (Kv) channel from Listeria monocytogenes. The sequence of the voltage-sensing module (transmembrane segments S1-S4) of KvLm is atypical in that it contains only three of the eight conserved charged residues known to be deterministic for voltage sensing in eukaryotic Kv's. In contrast, the pore module (PM), including the S4-S5 linker and cytoplasmic tail ...

متن کامل

Multi-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey

Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...

متن کامل

Multi-channel Medium Access Control Protocols for Wireless Sensor Networks: A Survey

Extensive researches on Wireless Sensor Networks (WSNs) have been performed and many techniques have been developed for the data link (MAC) layer. Most of them assume single-channel MAC protocols. In the usual dense deployment of the sensor networks, single-channel MAC protocols may be deficient because of radio collisions and limited bandwidth. Hence, using multiple channels can significantly ...

متن کامل

Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer.

Voltage-dependent ion channels are fundamental to the physiology of excitable cells because they underlie the generation and propagation of the action potential and excitation-contraction coupling. To understand how ion channels work, it is important to determine their structures in different conformations in a membrane environment. The validity of the crystal structure for the prokaryotic K(+)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 128  شماره 

صفحات  -

تاریخ انتشار 2006